Surface structure and reactivity of
multi-component oxides at the atomic scale

Subproject P02

Multi-component metal oxides exhibit a plethora of stoichiometry-dependent structural phases at the surface, even if the composition of the bulk is kept the same. The long-term objective of P02 is to unravel the relationship between surface electronic and geometric structure and reactivity, to ultimately tune these materials for energy-related reactions such as the ORR. The project applies the surface science approach. We will grow well-defined, epitaxial perovskite thin films of LSFO and LSMO in a UHV-based PLD/surface science apparatus under tight control of the surface stoichiometry in the first project period. We will determine the coordinates of surface atoms quantitatively using LEED-IV in close collaboration with theoretical groups.

Theoretical models will also help with interpreting atomically-resolved ncAFM/STM images. These images give direct insights into the behavior of polarons in these complex materials and show how adsorbates such as O2, H2O, CO, and CO2 interact with electronic and structural defects. XPS, TPD, and FTIR of these well-defined systems will deliver desorption energies, vibrational frequencies, and spectral fingerprints. These experimental data on well-defined systems will build a bridge when tested under ‘realistic’ environments at high pressure/temperature and in aqueous solutions. They will also serve to validate ML-based theory approaches.

Ulrike Diebold
PI

Expertise

Our expertise is experimental surface science. We operate a total of seven ultrahigh-vacuum (UHV) chambers, which contain virtually all main experimental surface science techniques, as well as an (electro-)chemistry lab.

All chambers are equipped with facilities for sample preparation (sputtering/annealing/gas dosing), as well as various growth techniques (e-beam evaporators, Knudsen cells, UHV-compatible sputter deposition, pulsed laser deposition (PLD)).

Analysis techniques used in our research include:

  • Scanning Tunneling Microscopy (STM) (in UHV 4K – 300 K, electrochemical STM)
  • Atomic Force Microscopy (AFM): UHV-based (q+ sensor) and in the ambient (cantilever-based)
  • Low-Energy Electron Diffraction (LEED)
  • Reflection High Energy Diffraction (RHEED)
  • X-ray Photoelectron Spectroscopy (XPS)
  • Ultraviolet Photoelectron Spectroscopy (UPS)
  • Auger Electron Spectroscopy (AES)
  • Low-energy He+ ion scattering (LEIS)
  • Thermal Programmed Desorption Spectroscopy (TPD)

Of particular use for TACO is our combined Pulsed-Laser Deposition/Surface Science setup shown on the right-hand side. It allows the growth of multi-component metal oxides and the investigations of surface properties within the same UHV setup.

Team

Ulrike Diebold
PI

Michele Riva
co-PI

Michael Schmid
co-PI

Florian Dörr
PhD Student

Alexander Imre
PhD Student, Student Representative 23–24

Paul Haidegger
Master Student

Marie Kienzer
Master Student

Associates

Sarah Tobisch
PhD Student

Former Members

Michael Brunthaler
Master Student

Erik Rheinfrank
PhD-Student

Christoph Schattauer
PostDoc

Publications

31 entries « 2 of 4 »

2024

Duality and degeneracy lifting in two-dimensional electron liquids on SrTiO3(001)

Sokolović, Igor; Guedes, Eduardo B.; van Waas, Thomas P.; Poncé, Samuel; Polley, Craig; Schmid, Michael; Radović, Milan; Setvín, Martin; Dil, J. Hugo

Duality and degeneracy lifting in two-dimensional electron liquids on SrTiO3(001)

Journal ArticleOpen AccessSubmittedarXiv

In: arXiv, 2024.

Abstract | Links | BibTeX | Tags: P02

Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

Birschitzky, Viktor; Sokolovic, Igor; Prezzi, Michael; Palotas, Krisztian; Setvin, Martin; Diebold, Ulrike; Reticcioli, Michele; Franchini, Cesare

Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

Journal ArticleOpen Access

In: npj Computational Materials, vol. 10, no. 89, 2024.

Abstract | Links | BibTeX | Tags: P02, P07

CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst

Wang, Chunlei; Sombut, Panukorn; Puntscher, Lena; Jakub, Zdenek; Meier, Matthias; Pavelec, Jiri; Bliem, Roland; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare; Parkinson, Gareth S.

CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst

Journal ArticleOpen AccessIn Press

In: Angewandte Chemie - International Edition, no. e202317347, 2024, ISSN: 1521-3773.

Abstract | Links | BibTeX | Tags: P02, P04, P07

2023

Formation and stability of Fe-rich terminations of the Fe3O4(001) surface

Gamba, Oscar; Eder, Moritz; Poglitsch, Matthias; Pavelec, Jiri; Sombut, Panukorn; Meier, Matthias; Diebold, Ulrike; Schmid, Michael; Parkinson, Gareth S.

Formation and stability of Fe-rich terminations of the Fe3O4(001) surface

Journal ArticleOpen Access

In: Materials Research Express, vol. 10, iss. 44, no. 116517, 2023.

Abstract | Links | BibTeX | Tags: P02, P04

Effect of Different In2O3(111) Surface Terminations on CO2 Adsorption

Gericke, Sabrina M.; Kauppinen, Minttu M.; Wagner, Margareta; Riva, Michele; Franceschi, Giada; Posada-Borbón, Alvaro; Rämisch, Lisa; Pfaff, Sebastian; Rheinfrank, Erik; Imre, Alexander M.; Preobrajenski, Alexei B.; Appelfeller, Stephan; Blomberg, Sara; Merte, Lindsay R.; Zetterberg, Johan; Diebold, Ulrike; Grönbeck, Henrik; Lundgren, Edvin

Effect of Different In2O3(111) Surface Terminations on CO2 Adsorption

Journal ArticleOpen Access

In: ACS Applied Materials & Interfaces, vol. 15, iss. 38, pp. 45367–45377, 2023.

Abstract | Links | BibTeX | Tags: P02

A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)

Puntscher, Lena; Sombut, Panukorn; Wang, Chunlei; Ulreich, Manuel; Pavelec, Jiri; Rafsanjani-Abbasi, Ali; Meier, Matthias; Lagin, Adam; Setvin, Martin; Diebold, Ulrike; Franchini, Cesare; Schmid, Michael; Parkinson, Gareth S.

A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)

Journal ArticleOpen Access

In: Journal of Physical Chemistry C, vol. 127, iss. 37, pp. 18378–18388, 2023.

Abstract | Links | BibTeX | Tags: P02, P04, P07

Hematite α-Fe2O3(0001) in Top and Side View: Resolving Long-Standing Controversies about Its Surface Structure

Redondo, Jesús; Michalička, Jan; Kraushofer, Florian; Franceschi, Giada; Šmid, Břetislav; Kumar, Nishant; Man, Ondřej; Blatnik, Matthias; Wrana, Dominik; Mallada, Benjamin; Švec, Martin; Parkinson, Gareth S.; Setvin, Martin; Riva, Michele; Diebold, Ulrike; Čechal, Jan

Hematite α-Fe2O3(0001) in Top and Side View: Resolving Long-Standing Controversies about Its Surface Structure

Journal ArticleOpen Access

In: Advanced Materials Interfaces, no. 2300602, 2023.

Abstract | Links | BibTeX | Tags: P02, P04

Oxide Surfaces

Franceschi, Giada; Diebold, Ulrike

Oxide Surfaces

Book Chapter

In: vol. 1, pp. 501-511, Encyclopedia of Materials: Electronics, 2023.

Abstract | Links | BibTeX | Tags: P02

Oxygen-Terminated (1 × 1) Reconstruction of Reduced Magnetite Fe3O4(111)

Kraushofer, Florian; Meier, Matthias; Jakub, Zdeněk; Hütner, Johanna; Balajka, Jan; Hulva, Jan; Schmid, Michael; Franchini, Cesare; Diebold, Ulrike; Parkinson, Gareth S.

Oxygen-Terminated (1 × 1) Reconstruction of Reduced Magnetite Fe3O4(111)

Journal ArticleOpen Access

In: The Journal of Physical Chemistry Letters, vol. 14, no. 13, pp. 3258–3265, 2023.

Abstract | Links | BibTeX | Tags: P02, P04, P07

Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images

Corrias, Marco; Papa, Lorenzo; Sokolovíc, Igor; Birschitzky, Viktor; Gorfer, Alexander; Setvin, Martin; Schmid, Michael; Diebold, Ulrike; Reticcioli, Michele; Franchini, Cesare

Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images

Journal ArticleOpen Access

In: Machine Learning: Science and Technology, vol. 4, pp. 015015, 2023.

Abstract | Links | BibTeX | Tags: P02, P07

31 entries « 2 of 4 »