Catalysis by ultrathin
LaBO3 (B=Co, Fe) perovskite films

Subproject P08

Perovskites are important catalysts, but detailed knowledge of their surface structure and chemistry is often lacking. The long-term objective of P08 is to elucidate structure-function correlations and visualize molecule-perovskite interaction in reactions involving O2, H2, CO, CO2, or H2O.

In the first project period, we will develop surface science-based model systems of LaCoO3 and LaFeO3 perovskites. Both epitaxial and polycrystalline thin films will be grown in UHV, guided by characterization via LEED, SXRD, SEM/EBSD, XPS/UPS/LEIS, IRAS, and TPD. Isotopically (18O or 13C) labeled adsorbates or films will reveal how oxygen and oxygen-containing molecules are activated. We will analyze the data in close collaboration with theoretical groups who simulate structure, stability, and infrared spectra (P03 Kresse).

We will employ a unique combination of in situ surface spectroscopy (PM-IRAS, NAP-XPS, SXRD) and in situ surface microscopy (PEEM, SPEM), combined with MS gas phase analysis, to monitor ongoing reactions from HV to atmospheric pressure. This procedure should enable us to gain fundamental insights into the interplay of ternary oxide atomic and electronic structure, defects, composition, adsorption, as well as initiation and spatial progression of surface reactions on the mesoscale via reaction fronts (local kinetics by imaging). Project P08 will create the required bridge between single crystals (P02 Diebold, P04 Parkinson) and more application-relevant nanomaterials (P10 Föttinger).

Günther Rupprechter
PI

Expertise

Our expertise is experimental surface science and its application to studies in heterogeneous catalysis. We operate a total of seven ultrahigh-vacuum (UHV) chambers, three of which are coupled to high-pressure cells. In situ and operando studies of surface reactions are carried out by area-averaging surface spectroscopy and real-time surface microscopy on the nano- and mesoscale. All chambers are equipped with facilities for sample preparation (sputtering, annealing, gas dosing), as well as various growth techniques (e-beam evaporators, Knudsen cells, sputter deposition). Analysis techniques used in our research include:

  • Auger Electron Spectroscopy (AES)
  • Field Emission Microscopy (FEM)
  • Field Ion Microscopy (FIM)
  • Gas Chromatography (GC)
  • Low-Energy Electron Diffraction (LEED)
  • Low-Energy Ion Scattering (LEIS)
  • Mass Spectroscopy (MS)
  • PhotoEmission Electron Microscopy (PEEM)
  • Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRAS)
  • Sum Frequency Generation (SFG)
  • Scanning PhotoElectron Microscopy (SPEM)
  • Scanning Tunneling Microscopy (STM)
  • Temperature-Programmed Desorption (TPD)
  • Ultraviolet Photoelectron Spectroscopy (UPS)
  • X-ray Absorption Spectroscopy (XAS)
  • Surface X-Ray Diffraction (SXRD)
  • X-ray Photoelectron Spectroscopy (XPS)

Collaboration Partners:

  • Prof. Andreas Stierle, DESY Hamburg, Germany: SXRD
  • Dr. Luca Gregoratti, ELETTRA Sincrotrone Trieste, Italy: SPEM
Our main equipment
Schematic overview on the left (a); photograph on the right (b)

The combined application of photoemission electron microscopy (PEEM) and scanning photoelectron microscopy (SPEM) is particularly beneficial for TACO because these techniques allow visualizing ongoing reactions and local surface analysis on a µm-scale.

Team

Günther Rupprechter
PI

Thomas Wicht
PhD Student

Associates

Yuri Suchorski
Associated Professor

Alexander Genest
PostDoc

Xia Li
PostDoc

Nevzat Yigit
PostDoc

Johannes Zeininger
PostDoc

Thomas Haunold
PhD Student

Maximilian Raab
PhD Student

Philipp Winkler
PhD Student

Publications

Show all

43 entries « 1 of 5 »

2021

Ni-modified Fe3O4(001) surface as a simple model system for understanding the oxygen evolution reaction

Mirabella, Francesca; Müllner, Matthias; Touzalin, Thomas; Riva, Michele; Jakub, Zdenek; Kraushofer, Florian; Schmid, Michael; Koper, Marc T M; Parkinson, Gareth S; Diebold, Ulrike

Ni-modified Fe3O4(001) surface as a simple model system for understanding the oxygen evolution reaction Journal Article

In: Electrochimica Acta, 389 , pp. 138638, 2021.

Abstract | Links | BibTeX | Tags: P02, P04, pre-TACO

Emerging applications of MXene materials in CO2 photocatalysis

Shen, Jiahui; Wu, Zhiyi; Li, Chaoran; Zhang, Chengcheng; Genest, Alexander; Rupprechter, Günther; He, Le

Emerging applications of MXene materials in CO2 photocatalysis Journal Article

In: FlatChem, 28 , pp. 100252, 2021.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis

Suchorski, Yuri; Zeininger, Johannes; Buhr, Sebastian; Raab, Maximilian; Stöger-Pollach, Michael; Bernardi, Johannes; Grönbeck, Henrik; Rupprechter, Günther

Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis Journal Article

In: Science, 372 (6548), pp. 1314–1318, 2021.

Links | BibTeX | Tags: P08, pre-TACO

Improved description of atomic environments using low-cost polynomial functions with compact support

Bircher, Martin P; Singraber, Andreas; Dellago, Christoph

Improved description of atomic environments using low-cost polynomial functions with compact support Journal Article

In: Machine Learning: Science and Technology, 2 (3), pp. 035026, 2021.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

α-β phase transition of zirconium predicted by on-the-fly machine-learned force field

Liu, Peitao; Verdi, Carla; Karsai, Ferenc; Kresse, Georg

α-β phase transition of zirconium predicted by on-the-fly machine-learned force field Journal Article

In: Physical Review Materials, 5 (5), pp. 053804, 2021.

Abstract | Links | BibTeX | Tags: P03, pre-TACO

Evolutionary computing and machine learning for discovering of low-energy defect configurations

Arrigoni, Marco; Madsen, Georg K H

Evolutionary computing and machine learning for discovering of low-energy defect configurations Journal Article

In: npj Computational Materials, 7 (1), 2021.

Abstract | Links | BibTeX | Tags: P09, pre-TACO

Co3O4-CeO2 Nanocomposites for Low-Temperature CO Oxidation

Yang, Jingxia; Yigit, Nevzat; Möller, Jury; Rupprechter, Günther

Co3O4-CeO2 Nanocomposites for Low-Temperature CO Oxidation Journal Article

In: Chemistry A European Journal, 2021.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water

Rawool, Sushma A; Belgamwar, Rajesh; Jana, Rajkumar; Maity, Ayan; Bhumla, Ankit; Yigit, Nevzat; Datta, Ayan; Rupprechter, Günther; Polshettiwar, Vivek

Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water Journal Article

In: Chemical Science, 12 (16), pp. 5774–5786, 2021.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Polarons in materials

Franchini, Cesare; Reticcioli, Michele; Setvin, Martin; Diebold, Ulrike

Polarons in materials Journal Article

In: Nature Reviews Materials, 2021.

Abstract | Links | BibTeX | Tags: P02, P07, pre-TACO

Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates

Rupprechter, Günther

Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates Journal Article

In: Small, 2021.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

43 entries « 1 of 5 »