Neural-network based simulation of rare event processes at the water/oxide interface

Subproject P12

Atomistic computer simulations of processes occurring at the water/oxide interface are challenging in several ways. The calculation of atomic forces based on ab initio methods is computationally very demanding, and barrier crossing events may lead to long computation times. Both these aspects severely limit accessible system sizes and simulation times.

In project P12, we will address these challenges using a combination of machine learning and advanced rare event sampling methods. In particular, using software developed in our group and collaborating with P03 Kresse, we will train neural network potentials based on the Behler-Parrinello approach for oxide/water interfaces, starting with the Fe3O4/water system studied in P11 Backus. We will pay special attention to error estimation and the correct treatment of long-range interactions. With the new potential, we will study the structure and dynamics of water near the oxide surface to provide the atomistic information necessary to rationalize the spectroscopy experiments of P11 Backus. Another important goal of P12 is to explore how deep generative models can be used to enhance rare event simulations. For this purpose, we will apply normalizing flows, represented by deep neural networks, to trajectory space. The resulting improved transition path sampling simulations will be used to study reactive processes investigated experimentally in other subprojects of TACO.

Christoph Dellago
PI

Expertise

Our research efforts focus on the development of simulation algorithms and their application to investigate dynamical processes in condensed matter systems based on the principles of equilibrium and non-equilibrium statistical mechanics. In particular, we have helped to create the transition path sampling methodology for the simulation of rare but important events, such as nucleation aprocesses, chemical reactions and biomolecular reorganizations. More recently, we have worked on applying machine learning methods to molecular structure recognition and the representation of potential and free energy surfaces.

Recent research topics include:

  • Self-assembly of nanocrystals
  • Folding and unfolding of biopolymers
  • Interfaces in aqueous systems
  • Phase separation in alloys
  • Thermo-polarisation
  • Structure and dynamics of water and ice
  • Cavitation
  • Crystallization
  • Non-equilibrium work fluctuations

Team

Christoph Dellago
PI

Pablo Montero de Hijes
PostDoc

Salvatore Romano
PhD Student

Associates

Alessandro Coretti
PostDoc

Andreas Tröster
PostDoc

Sebastian Falkner
PhD Student

Publications

Show all

43 entries « 5 of 5 »

2016

Methane dry reforming over ceria-zirconia supported Ni catalysts

Wolfbeisser, Astrid; Sophiphun, Onsulang; Bernardi, Johannes; Wittayakun, Jatuporn; Föttinger, Karin; Rupprechter, Günther

Methane dry reforming over ceria-zirconia supported Ni catalysts

Journal ArticleOpen Access

In: Catalysis Today, vol. 277, pp. 234–245, 2016.

Abstract | Links | BibTeX | Tags: P08, P10, pre-TACO

High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites

van Roekeghem, Ambroise; Carrete, Jesús; Oses, Corey; Curtarolo, Stefano; Mingo, Natalio

High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites

Journal ArticleOpen Access

In: Physical Review X, vol. 6, no. 4, pp. 041061, 2016.

Abstract | Links | BibTeX | Tags: P09, pre-TACO

2014

In Situ Spectroscopy of Complex Surface Reactions on Supported Pd–Zn, Pd–Ga, and Pd(Pt)–Cu Nanoparticles

Föttinger, Karin; Rupprechter, Günther

In Situ Spectroscopy of Complex Surface Reactions on Supported Pd–Zn, Pd–Ga, and Pd(Pt)–Cu Nanoparticles

Journal Article

In: Accounts of Chemical Research, vol. 47, no. 10, pp. 3071–3079, 2014.

Abstract | Links | BibTeX | Tags: P08, P10, pre-TACO

43 entries « 5 of 5 »