Publications
2023

Liu, Peitao; Wang, Jiantao; Avargues, Noah; Verdi, Carla; Singraber, Andreas; Karsai, Ferenc; Chen, Xing-Qiu; Kresse, Georg
Journal ArticleIn: Physical Review Letters, vol. 130, no. 7, pp. 078001, 2023.
Abstract | Links | BibTeX | Tags: P03
@article{Liu2023,
title = {Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111)},
author = {Peitao Liu and Jiantao Wang and Noah Avargues and Carla Verdi and Andreas Singraber and Ferenc Karsai and Xing-Qiu Chen and Georg Kresse},
doi = {10.1103/physrevlett.130.078001},
year = {2023},
date = {2023-02-17},
urldate = {2023-02-01},
journal = {Physical Review Letters},
volume = {130},
number = {7},
pages = {078001},
publisher = {American Physical Society (APS)},
abstract = {Adsorption of carbon monoxide (CO) on transition-metal surfaces is a prototypical process in surface sciences and catalysis. Despite its simplicity, it has posed great challenges to theoretical modeling. Pretty much all existing density functionals fail to accurately describe surface energies and CO adsorption site preference as well as adsorption energies simultaneously. Although the random phase approximation (RPA) cures these density functional theory failures, its large computational cost makes it prohibitive to study the CO adsorption for any but the simplest ordered cases. Here, we address these challenges by developing a machine-learned force field (MLFF) with near RPA accuracy for the prediction of coverage-dependent adsorption of CO on the Rh(111) surface through an efficient on-the-fly active learning procedure and a Δ-machine learning approach. We show that the RPA-derived MLFF is capable to accurately predict the Rh(111) surface energy and CO adsorption site preference as well as adsorption energies at different coverages that are all in good agreement with experiments. Moreover, the coverage-dependent ground-state adsorption patterns and adsorption saturation coverage are identified.},
keywords = {P03},
pubstate = {published},
tppubtype = {article}
}

Raab, Maximilian; Zeininger, Johannes; Suchorski, Yuri; Tokuda, Keita; Rupprechter, Günther
Emergence of chaos in a compartmentalized catalytic reaction nanosystem
Journal ArticleOpen AccessIn: Nature Communications, vol. 14, pp. 736–745, 2023.
Abstract | Links | BibTeX | Tags: P08
@article{Raab2023,
title = {Emergence of chaos in a compartmentalized catalytic reaction nanosystem},
author = {Maximilian Raab and Johannes Zeininger and Yuri Suchorski and Keita Tokuda and Günther Rupprechter},
doi = {10.1038/s41467-023-36434-y},
year = {2023},
date = {2023-02-10},
urldate = {2023-02-01},
journal = {Nature Communications},
volume = {14},
pages = {736--745},
publisher = {Springer Science and Business Media LLC},
abstract = {In compartmentalized systems, chemical reactions may proceed in differing ways even in adjacent compartments. In compartmentalized nanosystems, the reaction behaviour may deviate from that observed on the macro- or mesoscale. In situ studies of processes in such nanosystems meet severe experimental challenges, often leaving the field to theoretical simulations. Here, a rhodium nanocrystal surface consisting of different nm-sized nanofacets is used as a model of a compartmentalized reaction nanosystem. Using field emission microscopy, different reaction modes are observed, including a transition to spatio-temporal chaos. The transitions between different modes are caused by variations of the hydrogen pressure modifying the strength of diffusive coupling between individual nanofacets. Microkinetic simulations, performed for a network of 52 coupled oscillators, reveal the origins of the different reaction modes. Since diffusive coupling is characteristic for many living and non-living compartmentalized systems, the current findings may be relevant for a wide class of reaction systems.},
keywords = {P08},
pubstate = {published},
tppubtype = {article}
}

Maqbool, Qaisar; Yigit, Nevzat; Stöger-Pollach, Michael; Ruello, Maria Letizia; Tittarelli, Francesca; Rupprechter, Günther
Operando monitoring of a room temperature nanocomposite methanol sensor
Journal ArticleOpen AccessIn: Catalysis Science & Technology, vol. 13, iss. 3, pp. 624–636, 2023.
Abstract | Links | BibTeX | Tags: P08
@article{Maqbool2023,
title = {\textit{Operando} monitoring of a room temperature nanocomposite methanol sensor},
author = {Qaisar Maqbool and Nevzat Yigit and Michael Stöger-Pollach and Maria Letizia Ruello and Francesca Tittarelli and Günther Rupprechter},
doi = {10.1039/d2cy01395a},
year = {2023},
date = {2023-02-07},
urldate = {2023-02-07},
journal = {Catalysis Science & Technology},
volume = {13},
issue = {3},
pages = {624--636},
publisher = {Royal Society of Chemistry (RSC)},
abstract = {The sensing of volatile organic compounds by composites containing metal oxide semiconductors is typically explained via adsorption–desorption and surface electrochemical reactions changing the sensor's resistance. The analysis of molecular processes on chemiresistive gas sensors is often based on indirect evidence, whereas \textit{in situ} or \textit{operando} studies monitoring the gas/surface interactions enable a direct insight. Here we report a cross-disciplinary approach employing spectroscopy of working sensors to investigate room temperature methanol detection, contrasting well-characterized nanocomposite (TiO_{2}@rGO-NC) and reduced-graphene oxide (rGO) sensors. Methanol interactions with the sensors were examined by (quasi) \textit{operando}-DRIFTS and \textit{in situ}-ATR-FTIR spectroscopy, the first paralleled by simultaneous measurements of resistance. The sensing mechanism was also studied by mass spectroscopy (MS), revealing the surface electrochemical reactions. The \textit{operando} and \textit{in situ} spectroscopy techniques demonstrated that the sensing mechanism on the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O_{2} depletion–restoration due to a surface electrochemical reaction forming CO_{2} and H_{2}O.},
keywords = {P08},
pubstate = {published},
tppubtype = {article}
}

Corrias, Marco; Papa, Lorenzo; Sokolovíc, Igor; Birschitzky, Viktor; Gorfer, Alexander; Setvin, Martin; Schmid, Michael; Diebold, Ulrike; Reticcioli, Michele; Franchini, Cesare
Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images
Journal ArticleOpen AccessIn: Machine Learning: Science and Technology, vol. 4, pp. 015015, 2023.
Abstract | Links | BibTeX | Tags: P02, P07
@article{Corrias2023,
title = {Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images},
author = {Marco Corrias and Lorenzo Papa and Igor Sokolovíc and Viktor Birschitzky and Alexander Gorfer and Martin Setvin and Michael Schmid and Ulrike Diebold and Michele Reticcioli and Cesare Franchini},
doi = {10.1088/2632-2153/acb5e0},
year = {2023},
date = {2023-01-24},
urldate = {2023-01-24},
journal = {Machine Learning: Science and Technology},
volume = {4},
pages = {015015},
abstract = {Analyzing atomically resolved images is a time-consuming process requiring solid experience and substantial human intervention. In addition, the acquired images contain a large amount of information such as crystal structure, presence and distribution of defects, and formation of domains, which need to be resolved to understand a material's surface structure. Therefore, machine learning techniques have been applied in scanning probe and electron microscopies during the last years, aiming for automatized and efficient image analysis. This work introduces a free and open source tool (AiSurf: Automated Identification of Surface Images) developed to inspect atomically resolved images via Scale-Invariant Feature Transform (SIFT) and Clustering Algorithms (CA). AiSurf extracts primitive lattice vectors, unit cells, and structural distortions from the original image, with no pre-assumption on the lattice and minimal user intervention. The method is applied to various atomically resolved non-contact atomic force microscopy (AFM) images of selected surfaces with different levels of complexity: anatase TiO_{2}(101), oxygen deficient rutile TiO_{2}(110) with and without CO adsorbates, SrTiO_{3}(001) with Sr vacancies and graphene with C vacancies. The code delivers excellent results and is tested against atom misclassification and artifacts, thereby facilitating the interpretation of scanning probe microscopy images.},
keywords = {P02, P07},
pubstate = {published},
tppubtype = {article}
}
2022

Zeininger, Johannes; Raab, Maximilian; Suchorski, Yuri; Buhr, Sebastian; Stöger-Pollach, Michael; Bernardi, Johannes; Rupprechter, Günther
Reaction Modes on a Single Catalytic Particle: Nanoscale Imaging and Micro-Kinetic Modeling
Journal ArticleOpen AccessIn: ACS Catalysis, vol. 12, no. 20, pp. 12774–12785, 2022.
Abstract | Links | BibTeX | Tags: P08
@article{Zeininger2022,
title = {Reaction Modes on a Single Catalytic Particle: Nanoscale Imaging and Micro-Kinetic Modeling},
author = {Johannes Zeininger and Maximilian Raab and Yuri Suchorski and Sebastian Buhr and Michael Stöger-Pollach and Johannes Bernardi and Günther Rupprechter},
doi = {10.1021/acscatal.2c02901},
year = {2022},
date = {2022-10-07},
journal = {ACS Catalysis},
volume = {12},
number = {20},
pages = {12774--12785},
publisher = {American Chemical Society (ACS)},
abstract = {The kinetic behavior of individual Rh(\textit{hkl}) nanofacets coupled in a common reaction system was studied using the apex of a curved rhodium microcrystal (radius of 0.65 μm) as a model of a single catalytic particle and field electron microscopy for in situ imaging of catalytic hydrogen oxidation. Depending on the extent of interfacet coupling via hydrogen diffusion, different oscillating reaction modes were observed including highly unusual multifrequential oscillations: differently oriented nanofacets oscillated with differing frequencies despite their immediate neighborhood. The transitions between different modes were induced by variations in the particle temperature, causing local surface reconstructions, which create locally protruding atomic rows. These atomic rows modified the coupling strength between individual nanofacets and caused the transitions between different oscillating modes. Effects such as entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling were observed. To reveal the origin of the different experimentally observed effects, microkinetic simulations were performed for a network of 105 coupled oscillators, modeling the individual nanofacets communicating via hydrogen surface diffusion. The calculated behavior of the oscillators, the local frequencies, and the varying degree of spatial synchronization describe the experimental observations well.},
keywords = {P08},
pubstate = {published},
tppubtype = {article}
}

Zeininger, Johannes; Winkler, Philipp; Raab, Maximilian; Suchorski, Yuri; Prieto, Mauricio J.; Tănase, Liviu C.; Caldas, Lucas Souza; Tiwari, Aarti; Schmidt, Thomas; Stöger-Pollach, Michael; Steiger-Thirsfeld, Andreas; Cuenya, Beatriz Roldan; Rupprechter, Günther
Pattern Formation in Catalytic H2 Oxidation on Rh: Zooming in by Correlative Microscopy
Journal ArticleOpen AccessIn: ACS Catalysis, vol. 12, no. 19, pp. 11974–11983, 2022.
Abstract | Links | BibTeX | Tags: P08
@article{Zeininger2022a,
title = {Pattern Formation in Catalytic H_{2} Oxidation on Rh: Zooming in by Correlative Microscopy},
author = {Johannes Zeininger and Philipp Winkler and Maximilian Raab and Yuri Suchorski and Mauricio J. Prieto and Liviu C. Tănase and Lucas Souza Caldas and Aarti Tiwari and Thomas Schmidt and Michael Stöger-Pollach and Andreas Steiger-Thirsfeld and Beatriz Roldan Cuenya and Günther Rupprechter},
doi = {10.1021/acscatal.2c03692},
year = {2022},
date = {2022-09-19},
urldate = {2022-09-19},
journal = {ACS Catalysis},
volume = {12},
number = {19},
pages = {11974--11983},
publisher = {American Chemical Society (ACS)},
abstract = {Spatio-temporal nonuniformities in H_{2} oxidation on individual Rh(\textit{h k l}) domains of a polycrystalline Rh foil were studied in the 10^{–6} mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.},
keywords = {P08},
pubstate = {published},
tppubtype = {article}
}

Wanzenböck, Ralf; Arrigoni, Marco; Bichelmaier, Sebastian; Buchner, Florian; Carrete, Jesús; Madsen, Georg K. H.
Neural-network-backed evolutionary search for SrTiO3(110) surface reconstructions
Journal ArticleOpen AccessIn: Digital Discovery, vol. 1, no. 5, pp. 703–710, 2022.
Abstract | Links | BibTeX | Tags: P09
@article{Wanzenboeck2022,
title = {Neural-network-backed evolutionary search for SrTiO_{3}(110) surface reconstructions},
author = {Ralf Wanzenböck and Marco Arrigoni and Sebastian Bichelmaier and Florian Buchner and Jesús Carrete and Georg K. H. Madsen},
doi = {10.1039/d2dd00072e},
year = {2022},
date = {2022-08-26},
journal = {Digital Discovery},
volume = {1},
number = {5},
pages = {703--710},
publisher = {Royal Society of Chemistry (RSC)},
abstract = {The determination of atomic structures in surface reconstructions has typically relied on structural models derived from intuition and domain knowledge. Evolutionary algorithms have emerged as powerful tools for such structure searches. However, when density functional theory is used to evaluate the energy the computational cost of a thorough exploration of the potential energy landscape is prohibitive. Here, we drive the exploration of the rich phase diagram of TiO_{x} overlayer structures on SrTiO_{3}(110) by combining the covariance matrix adaptation evolution strategy (CMA-ES) and a neural-network force field (NNFF) as a surrogate energy model. By training solely on SrTiO_{3}(110) 4×1 overlayer structures and performing CMA-ES runs on 3×1, 4×1 and 5×1 overlayers, we verify the transferability of the NNFF. The speedup due to the surrogate model allows taking advantage of the stochastic nature of the CMA-ES to perform exhaustive sets of explorations and identify both known and new low-energy reconstructions.},
keywords = {P09},
pubstate = {published},
tppubtype = {article}
}

Wang, Zhichang; Reticcioli, Michele; Jakub, Zdenek; Sokolović, Igor; Meier, Matthias; Boatner, Lynn A; Schmid, Michael; Parkinson, Gareth S.; Diebold, Ulrike; Franchini, Cesare; Setvin, Martin
Surface chemistry on a polarizable surface: Coupling of CO with KTaO 3(001)
Journal ArticleOpen AccessIn: Science Advances, vol. 8, iss. 33, 2022.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Wang2022,
title = {Surface chemistry on a polarizable surface: Coupling of CO with KTaO _{3}(001)},
author = {Zhichang Wang and Michele Reticcioli and Zdenek Jakub and Igor Sokolović and Matthias Meier and Lynn A Boatner and Michael Schmid and Gareth S. Parkinson and Ulrike Diebold and Cesare Franchini and Martin Setvin},
url = {https://www.science.org/doi/10.1126/sciadv.abq1433},
doi = {10.1126/sciadv.abq1433},
year = {2022},
date = {2022-08-19},
urldate = {2022-08-19},
journal = {Science Advances},
volume = {8},
issue = {33},
publisher = {American Association for the Advancement of Science (AAAS)},
abstract = {Polarizable materials attract attention in catalysis because they have a free parameter for tuning chemical reactivity. Their surfaces entangle the dielectric polarization with surface polarity, excess charge, and orbital hybridization. How this affects individual adsorbed molecules is shown for the incipient ferroelectric perovskite KTaO_{3}. This intrinsically polar material cleaves along (001) into KO- and TaO_{2}-terminated surface domains. At TaO_{2} terraces, the polarity-compensating excess electrons form a two-dimensional electron gas and can also localize by coupling to ferroelectric distortions. TaO_{2} terraces host two distinct types of CO molecules, adsorbed at equivalent lattice sites but charged differently as seen in atomic force microscopy/scanning tunneling microscopy. Temperature-programmed desorption shows substantially stronger binding of the charged CO; in density functional theory calculations, the excess charge favors a bipolaronic configuration coupled to the CO. These results pinpoint how adsorption states couple to ferroelectric polarization.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
![Role of Polarons in Single-Atom Catalysts: Case Study of Me1[Au1,Pt1 and Rh1] on TiO2(110)](https://sfb-taco.at/wp-content/uploads/2023/02/P07_P04-300x300.png)
Sombut, Panukorn; Puntscher, Lena; Atzmüller, Marlene; Jakub, Zdenek; Reticcioli, Michele; Meier, Matthias; Parkinson, Gareth S.; Franchini, Cesare
Role of Polarons in Single-Atom Catalysts: Case Study of Me1[Au1,Pt1 and Rh1] on TiO2(110)
Journal ArticleOpen AccessIn: Topics in Catalysis, vol. 65, pp. 1620–1630, 2022.
Abstract | Links | BibTeX | Tags: P04, P07
@article{Sombut2022,
title = {Role of Polarons in Single-Atom Catalysts: Case Study of Me_{1}[Au_{1},Pt_{1} and Rh_{1}] on TiO_{2}(110)},
author = {Panukorn Sombut and Lena Puntscher and Marlene Atzmüller and Zdenek Jakub and Michele Reticcioli and Matthias Meier and Gareth S. Parkinson and Cesare Franchini},
doi = {10.1007/s11244-022-01651-0},
year = {2022},
date = {2022-07-25},
journal = {Topics in Catalysis},
volume = {65},
pages = {1620--1630},
abstract = {The local environment of metal-oxide supported single-atom catalysts plays a decisive role in the surface reactivity and related catalytic properties. The study of such systems is complicated by the presence of point defects on the surface, which are often associated with the localization of excess charge in the form of polarons. This can affect the stability, the electronic configuration, and the local geometry of the adsorbed adatoms. In this work, through the use of density functional theory and surface-sensitive experiments, we study the adsorption of Rh_{1}, Pt_{1}, and Au_{1} metals on the reduced TiO_{2}(110) surface, a prototypical polaronic material. A systematic analysis of the adsorption configurations and oxidation states of the adsorbed metals reveals different types of couplings between adsorbates and polarons. As confirmed by scanning tunneling microscopy measurements, the favored Pt_{1} and Au_{1} adsorption at oxygen vacancy sites is associated with a strong electronic charge transfer from polaronic states to adatom orbitals, which results in a reduction of the adsorbed metal. In contrast, the Rh_{1} adatoms interact weakly with the excess charge, which leaves the polarons largely unaffected. Our results show that an accurate understanding of the properties of single-atom catalysts on oxide surfaces requires a careful account of the interplay between adatoms, vacancy sites, and polarons.},
keywords = {P04, P07},
pubstate = {published},
tppubtype = {article}
}

Reticcioli, Michele; Wang, Zhichang; Schmid, Michael; Wrana, Dominik; Boatner, Lynn A.; Diebold, Ulrike; Setvin, Martin; Franchini, Cesare
Competing electronic states emerging on polar surfaces
Journal ArticleOpen AccessIn: Nature Communications, vol. 13, no. 4311, 2022.
Abstract | Links | BibTeX | Tags: P02, P07
@article{Reticcioli2022,
title = {Competing electronic states emerging on polar surfaces},
author = {Michele Reticcioli and Zhichang Wang and Michael Schmid and Dominik Wrana and Lynn A. Boatner and Ulrike Diebold and Martin Setvin and Cesare Franchini},
url = {https://www.nature.com/articles/s41467-022-31953-6},
doi = {10.1038/s41467-022-31953-6},
year = {2022},
date = {2022-07-25},
urldate = {2022-07-25},
journal = {Nature Communications},
volume = {13},
number = {4311},
publisher = {Springer Science and Business Media LLC},
abstract = {Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO_{2} termination of KTaO_{3}(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions.},
keywords = {P02, P07},
pubstate = {published},
tppubtype = {article}
}