Bayesian regression for
multi-level machine-learned potentials

Subproject P03

The first-principles description of the properties of multi-component metal oxides is an exceedingly challenging problem. The reasons are that the configurational space grows exponentially with the number of species and standard Density Functional Theory (DFT) is often not accurate enough. The long-term objective of P03 is to accelerate first-principles calculations by developing machine-learning approaches for the description of the interatomic forces, Born effective charges, and other tensorial properties of multivalent oxides. The project will rely on kernel-based methods and Bayesian inference to implement fully automatic “on-the-fly” learning.

In the first project period, we will develop machine-learned force fields (MLFF) for DFT and DFT+U, whereby the number of components in the FF will be gradually increased. A concise framework for learning tensorial properties will be implemented. We will use this to simulate infrared spectra of oxide materials, which can be readily compared to the finite-temperature spectra measured by the experimental groups.

The difference between DFT and hybrid functionals will be machine-learned to go beyond semi-local functionals (Delta-learning). The long-term perspective is to extend this approach to highly accurate beyond-DFT methods, such as the random phase approximation and quantum chemistry (coupled cluster) methods. Although kernel-based methods are exceedingly accurate, they are often less efficient than NN. We will collaborate with other projects to recast the on-the-fly trained FF into NN potentials to address this issue.

Georg Kresse
PI

Expertise

The main research efforts of the group are directed towards the development of quantum-mechanical tools for atomic-scale simulations of properties and processes in materials and the application of these methodologies to key areas of condensed matter physics and materials research. An important pillar of the research is the Vienna Ab initio Simulation Package (VASP), a general-purpose ab initio code for solving the many-electron Schrödinger equation. The code is among the world leaders in its field, with more than 3500 licensees worldwide. We have expertise with simulations for a vast number of properties using many different techniques:

  • Density functional theory (DFT), including spin and non-collinear DFT
  • Linear response theory to calculate phonons and dielectric properties
  • Hartree-Fock techniques and many flavors of hybrid functionals
  • Many-body perturbation theory, including GW and Bethe-Salpeter
  • Wavefunction-based correlated methods (Møller-Plesset perturbation theory)
  • Surface science, including growth and oxide formation
  • Simulation of nanostructures
  • Semiconductor physics: charge trapping, polarons
  • Electronic excitations
  • Defect energies in extended systems

For TACO, we will adapt our machine-learning techniques to tensorial properties and correlated wavefunction techniques. These techniques are directly integrated into VASP and allow to accelerate finite-temperature simulations by many orders of magnitudes.

Team

Georg Kresse
PI

Bernhard Schmiedmayer
PhD Student

Carolin Faller PhD Student, Student Representative 22–24

Former Members

Carla Verdi
co-PI

Peitao Liu
PostDoc

Publications

Show all

43 entries « 3 of 5 »

2020

Energy-Guided Shape Control Towards Highly Active CeO2

Yang, Jingxia; Ding, Huihui; Wang, Jinjie; Yigit, Nevzat; Xu, Jingli; Rupprechter, Günther; Zhang, Min; Li, Zhiquan

Energy-Guided Shape Control Towards Highly Active CeO2

Journal Article

In: Topics in Catalysis, vol. 63, no. 19-20, pp. 1743–1753, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Jinnouchi, Ryosuke; Miwa, Kazutoshi; Karsai, Ferenc; Kresse, Georg; Asahi, Ryoji

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Journal Article

In: The Journal of Physical Chemistry Letters, vol. 11, no. 17, pp. 6946–6955, 2020.

Abstract | Links | BibTeX | Tags: P03, pre-TACO

Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Grumelli, Doris; Wiegmann, Tim; Barja, Sara; Reikowski, Finn; Maroun, Fouad; Allongue, Philippe; Balajka, Jan; Parkinson, Gareth S.; Diebold, Ulrike; Kern, Klaus; Magnussen, Olaf M

Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Journal Article

In: Angewandte Chemie - International Edition, vol. 59, no. 49, pp. 21904–21908, 2020.

Abstract | Links | BibTeX | Tags: P02, P04, pre-TACO

Catalysis by Imaging: From Meso- to Nano-scale

Suchorski, Yuri; Rupprechter, Günther

Catalysis by Imaging: From Meso- to Nano-scale

Journal ArticleOpen Access

In: Topics in Catalysis, vol. 63, no. 15-18, pp. 1532–1544, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Probing the Mineral–Water Interface with Nonlinear Optical Spectroscopy

Backus, Ellen H. G.; Schaefer, Jan; Bonn, Mischa

Probing the Mineral–Water Interface with Nonlinear Optical Spectroscopy

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 60, no. 19, pp. 10482–10501, 2020.

Abstract | Links | BibTeX | Tags: P11, pre-TACO

The Dynamic Structure of Au38(SR)24 Nanoclusters Supported on CeO2 upon Pretreatment and CO Oxidation

Pollitt, Stephan; Truttmann, Vera; Haunold, Thomas; Garcia, Clara; Olszewski, Wojciech; Llorca, Jordi; é, Noelia Barrab; Rupprechter, Günther

The Dynamic Structure of Au38(SR)24 Nanoclusters Supported on CeO2 upon Pretreatment and CO Oxidation

Journal ArticleOpen Access

In: ACS Catalysis, vol. 10, no. 11, pp. 6144–6148, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Surface Charges at the CaF2/Water Interface Allow Very Fast Intermolecular Vibrational-Energy Transfer

Lesnicki, Dominika; Zhang, Zhen; Bonn, Mischa; Sulpizi, Marialore; Backus, Ellen H. G.

Surface Charges at the CaF2/Water Interface Allow Very Fast Intermolecular Vibrational-Energy Transfer

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 59, no. 31, pp. 13116–13121, 2020.

Abstract | Links | BibTeX | Tags: P11, pre-TACO

Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution

Lindenthal, Lorenz; Rameshan, Raffael; Summerer, Harald; Ruh, Thomas; Popovic, Janko; Nenning, Andreas; Löffler, Stefan; Opitz, Alexander Karl; Blaha, Peter; Rameshan, Christoph

Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution

Journal ArticleOpen Access

In: Catalysts, vol. 10, no. 3, pp. 268, 2020.

Abstract | Links | BibTeX | Tags: P10, pre-TACO

2019

Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations

Michl, Jakob; Sega, Marcello; Dellago, Christoph

Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations

Journal ArticleOpen Access

In: The Journal of Chemical Physics, vol. 151, no. 10, pp. 104502, 2019.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst

Jakub, Zdenek; Hulva, Jan; Meier, Matthias; Bliem, Roland; Kraushofer, Florian; Setvin, Martin; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare; Parkinson, Gareth S.

Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 58, no. 39, pp. 13961–13968, 2019.

Abstract | Links | BibTeX | Tags: P02, P04, P07, pre-TACO

43 entries « 3 of 5 »