Polaron pattern recognition
in correlated oxide surfaces
Subproject P07
The formation of polarons by charge trapping is pervasive in transition metal oxides. Polarons have been widely studied in binary compounds but comparatively much less so in perovskites.
In P07, we aim to combine advanced first-principles approaches with computer-vision and machine-learning techniques to accelerate and automatize the study of polarons and novel polaron effects in perovskites.
The project has three main pillars: (i) artificial intelligence-aided analysis of experimental ncAFM/STM results (from P02 Diebold, P04 Parkinson) to extract lattice symmetry, surface structure, and chemical composition; (ii) calculation of polaronic configurational energies at different concentrations and temperature using NN; and (iii) identification of unusual types of polarons and polaron-defect complexes in doped perovskites such as spin-, ferroelectric-, Jahn-Teller-, small polarons, and bipolarons.
In the long-term, we plan to establish a fully automatic diagnosis of ncAFM/STM (symmetry, defects, domains) and LEED (diffraction, surface reconstruction) and the construction of a combined experiment & theory database. The research will benefit from two external collaborators and synergy with several experimental (P02, P04) and computational (P03 Kresse, P09 Madsen) TACO partners.
Expertise
Theoretical and computational modeling of quantum materials, in particular transition metal oxides in bulk phases and surfaces, to predict and interpret novel physical effects and states of matter arising from fundamental quantum interactions: electron-electron correlation, electron-phonon coupling, spin-spin exchange, spin-orbit coupling, to name the most relevant ones. The theoretical research is conducted in strong synergy and cooperation with experimental groups.
Methods:
- Density functional theory, hybrid functionals, GW, BSE
- First principles molecular dynamics
- Effective Hamiltonian
- Diagrammatic quantum Monte Carlo
- Dynamical mean-field theory
- Machine learning and computer vision
Applications:
- Polarons: formation, dynamics, polaron-mediated effects, many-body properties
- Computational surface science: energetics, reconstructions, surface polarons, polarity effects, adsorption and chemical reactions
- Quantum magnetism: all-rank multipolar spin-spin interactions beyond Heisenberg exchange
- Electronic and magnetic phase transitions
Our goals in TACO:
- Accelerated study of polaron properties by integrating molecular dynamics and machine learning methods (kernel-ridge regression, standard and convolutional neural-networks
- Implementation of automated identification of local structures in atomically resolved images using computer vision methods
- Complementing the experimental measurements with extensive first principles modeling of perovskite surfaces.
Team
Publications
2024
Romano, Salvatore; de Hijes, Pablo Montero; Meier, Matthias; Kresse, Georg; Franchini, Cesare; Dellago, Christoph
Journal ArticleOpen AccessarXivIn: 2024.
Abstract | Links | BibTeX | Tags: P03, P07, P12
@article{Romano_2024a,
title = {Structure and dynamics of the magnetite(001)/water interface from molecular dynamics simulations based on a neural network potential},
author = {Salvatore Romano and Pablo Montero de Hijes and Matthias Meier and Georg Kresse and Cesare Franchini and Christoph Dellago},
url = {https://arxiv.org/abs/2408.11538},
year = {2024},
date = {2024-08-21},
urldate = {2024-08-21},
abstract = {The magnetite/water interface is commonly found in nature and plays a crucial role in various technological applications. However, our understanding of its structural and dynamical properties at the molecular scale remains still limited. In this study, we develop an efficient Behler-Parrinello neural network potential (NNP) for the magnetite/water system, paying particular attention to the accurate generation of reference data with density functional theory. Using this NNP, we performed extensive molecular dynamics simulations of the magnetite (001) surface across a wide range of water coverages, from the single molecule to bulk water. Our simulations revealed several new ground states of low coverage water on the Subsurface Cation Vacancy (SCV) model and yielded a density profile of water at the surface that exhibits marked layering. By calculating mean square displacements, we obtained quantitative information on the diffusion of water molecules on the SCV for different coverages, revealing significant anisotropy. Additionally, our simulations provided qualitative insights into the dissociation mechanisms of water molecules at the surface.},
keywords = {P03, P07, P12},
pubstate = {published},
tppubtype = {article}
}
Leoni, Luca; Franchini, Cesare
Global sampling of Feynman's diagrams through normalizing flow
Journal ArticleOpen AccessIn: Physical Review Research, vol. 6, iss. 3, pp. 033041, 2024.
Abstract | Links | BibTeX | Tags: P07
@article{PhysRevResearch.6.033041,
title = {Global sampling of Feynman's diagrams through normalizing flow},
author = {Luca Leoni and Cesare Franchini},
url = {https://link.aps.org/doi/10.1103/PhysRevResearch.6.033041},
doi = {10.1103/PhysRevResearch.6.033041},
year = {2024},
date = {2024-07-08},
journal = {Physical Review Research},
volume = {6},
issue = {3},
pages = {033041},
abstract = {Normalizing flows (NF) are powerful generative models with increasing applications in augmenting Monte Carlo algorithms due to their high flexibility and expressiveness. In this work we explore the integration of NF in the diagrammatic Monte Carlo (DMC) method, presenting an architecture designed to sample the intricate multidimensional space of Feynman's diagrams through dimensionality reduction. By decoupling the sampling of diagram order and interaction times, the flow focuses on one interaction at a time. This enables one to construct a general diagram by employing the same unsupervised model iteratively, dressing a zero-order diagram with interactions determined by the previously sampled order. The resulting NF-augmented DMC method is tested on the widely used single-site Holstein polaron model in the entire electron-phonon coupling regime. The obtained data show that the model accurately reproduces the diagram distribution by reducing sample correlation and observables' statistical error, constituting the first example of global sampling strategy for connected Feynman's diagrams in the DMC method},
keywords = {P07},
pubstate = {published},
tppubtype = {article}
}
Birschitzky, Viktor; Sokolovic, Igor; Prezzi, Michael; Palotas, Krisztian; Setvin, Martin; Diebold, Ulrike; Reticcioli, Michele; Franchini, Cesare
Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface
Journal ArticleOpen AccessIn: npj Computational Materials, vol. 10, no. 89, 2024.
Abstract | Links | BibTeX | Tags: P02, P07
@article{Birschitzky_2024a,
title = {Machine learning-based prediction of polaron-vacancy patterns on the TiO_{2}(110) surface},
author = {Viktor Birschitzky and Igor Sokolovic and Michael Prezzi and Krisztian Palotas and Martin Setvin and Ulrike Diebold and Michele Reticcioli and Cesare Franchini},
url = {https://www.nature.com/articles/s41524-024-01289-4},
doi = {https://doi.org/10.1038/s41524-024-01289-4},
year = {2024},
date = {2024-05-06},
urldate = {2024-05-06},
journal = {npj Computational Materials},
volume = {10},
number = {89},
abstract = {The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (V_{O}) and induced small polarons on rutile TiO_{2}(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous VO distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing V_{O}-configurations are identified, which could have consequences for surface reactivity.},
keywords = {P02, P07},
pubstate = {published},
tppubtype = {article}
}
Celiberti, Lorenzo; Mosca, Dario Fiore; Allodi, Giuseppe; Pourovskii, Leonid V.; Tassetti, Anna; Forino, Paola Caterina; Cong, Rong; Garcia, Erick; Tran, Phuong M.; Renzi, Roberto De; Woodward, Patrick M.; Mitrović, Vesna F.; Sanna, Samuele; Franchini, Cesare
Spin-orbital Jahn-Teller bipolarons
Journal ArticleOpen AccessIn: Nature Communications, vol. 15, no. 2429, 2024.
Abstract | Links | BibTeX | Tags: P07
@article{Celiberti2024,
title = {Spin-orbital Jahn-Teller bipolarons},
author = {Lorenzo Celiberti and Dario Fiore Mosca and Giuseppe Allodi and Leonid V. Pourovskii and Anna Tassetti and Paola Caterina Forino and Rong Cong and Erick Garcia and Phuong M. Tran and Roberto De Renzi and Patrick M. Woodward and Vesna F. Mitrović and Samuele Sanna and Cesare Franchini},
url = {https://doi.org/10.1038/s41467-024-46621-0},
doi = {10.1038/s41467-024-46621-0},
year = {2024},
date = {2024-03-18},
urldate = {2024-03-18},
journal = {Nature Communications},
volume = {15},
number = {2429},
abstract = {Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba_{2}Na_{1−x}Ca_{x}OsO_{6} (0 < x < 1), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d^{1} spin-orbital J_{eff} = 3/2 levels, characteristic of the parent compound Ba_{2}NaOsO_{6} (BNOO), into a bipolaron 5d^{2} J_{eff} = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d^{1} BNOO to d^{2} Ba_{2}CaOsO_{6} (BCOO).},
keywords = {P07},
pubstate = {published},
tppubtype = {article}
}
Wang, Chunlei; Sombut, Panukorn; Puntscher, Lena; Jakub, Zdenek; Meier, Matthias; Pavelec, Jiri; Bliem, Roland; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare; Parkinson, Gareth S.
CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst
Journal ArticleOpen AccessIn PressIn: Angewandte Chemie - International Edition, no. e202317347, 2024, ISSN: 1521-3773.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Wang2024,
title = {CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst},
author = {Chunlei Wang and Panukorn Sombut and Lena Puntscher and Zdenek Jakub and Matthias Meier and Jiri Pavelec and Roland Bliem and Michael Schmid and Ulrike Diebold and Cesare Franchini and Gareth S. Parkinson},
doi = {10.1002/anie.202317347},
issn = {1521-3773},
year = {2024},
date = {2024-01-31},
journal = {Angewandte Chemie - International Edition},
number = {e202317347},
publisher = {Wiley},
abstract = {The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh_{1} adatoms and minority Rh_{2} dimers on Fe_{3}O_{4}(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh_{1} sites results exclusively in stable Rh_{1}CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh_{1}(CO)_{2} gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh_{2} dimers via an unstable Rh_{2}(CO)_{3} intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
2023
Puntscher, Lena; Sombut, Panukorn; Wang, Chunlei; Ulreich, Manuel; Pavelec, Jiri; Rafsanjani-Abbasi, Ali; Meier, Matthias; Lagin, Adam; Setvin, Martin; Diebold, Ulrike; Franchini, Cesare; Schmid, Michael; Parkinson, Gareth S.
A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)
Journal ArticleOpen AccessIn: Journal of Physical Chemistry C, vol. 127, iss. 37, pp. 18378–18388, 2023.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Puntscher2023,
title = {A Multitechnique Study of C_{2}H_{4} Adsorption on Fe_{3}O_{4}(001)},
author = {Lena Puntscher and Panukorn Sombut and Chunlei Wang and Manuel Ulreich and Jiri Pavelec and Ali Rafsanjani-Abbasi and Matthias Meier and Adam Lagin and Martin Setvin and Ulrike Diebold and Cesare Franchini and Michael Schmid and Gareth S. Parkinson},
doi = {10.1021/acs.jpcc.3c03684},
year = {2023},
date = {2023-09-11},
urldate = {2023-09-11},
journal = {Journal of Physical Chemistry C},
volume = {127},
issue = {37},
pages = {18378--18388},
publisher = {American Chemical Society (ACS)},
abstract = {The adsorption/desorption of ethene (C_{2}H_{4}), also commonly known as ethylene, on Fe_{3}O_{4}(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C_{2}H_{4} adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C_{2}H_{4} binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1–0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C_{2}H_{4} adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
Tresca, Cesare; Forcella, Pietro Maria; Angeletti, Andrea; Ranalli, Luigi; Franchini, Cesare; Reticcioli, Michele; Profeta, Gianni
Evidence of Molecular Hydrogen in the N-doped LuH3 System: a Possible Path to Superconductivity?
Journal ArticleSubmittedarXivIn: arXiv, 2023.
Abstract | Links | BibTeX | Tags: P07
@article{Tresca2024,
title = {Evidence of Molecular Hydrogen in the N-doped LuH3 System: a Possible Path to Superconductivity?},
author = {Cesare Tresca and Pietro Maria Forcella and Andrea Angeletti and Luigi Ranalli and Cesare Franchini and Michele Reticcioli and Gianni Profeta},
url = {https://arxiv.org/abs/2308.03619},
year = {2023},
date = {2023-08-07},
urldate = {2023-08-07},
journal = {arXiv},
abstract = {The report of near-ambient superconductivity in nitrogen-doped lutetium hydrides could represent an epochal discovery, awaited for more than a century, possibly leading to inconceivable scientific and technological implications. However, after months since the first report, clear experimental and theoretical confirmations are yet to come: The initially proposed compound structure fails to explain the superconducting behavior, calling for a shift in perspective. By means of machine-learning-accelerated force-field molecular dynamics, we explore the formation of H_{2} molecules in nitrogen-doped lutetium hydride, demonstrating the active role of nitrogen in stabilizing this phase. Our density functional theory calculations show that the presence of hydrogen molecules leads to a dynamically stable structure, characterized by a superconducting phase requiring no applied pressure, although the predicted temperatures are still much lower than room temperature. We believe that the possibility to stabilize hydrogen in molecular form represents a new route to explore disordered phases in hydrides and their transport properties at near ambient conditions.},
keywords = {P07},
pubstate = {published},
tppubtype = {article}
}
Redondo, Jesus; Reticcioli, Michele; Gabriel, Vit; Wrana, Dominik; Ellinger, Florian; Riva, Michele; Franceschi, Giada; Rheinfrank, Erik; Sokolovic, Igor; Jakub, Zdenek; Kraushofer, Florian; Alexander, Aji; Patera, Laerte L.; Repp, Jascha; Schmid, Michael; Diebold, Ulrike; Parkinson, Gareth S.; Franchini, Cesare; Kocan, Pavel; Setvin, Martin
Real-space investigation of polarons in hematite Fe2O3
Journal ArticleSubmittedarXivIn: arXiv, 2023.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Redondo2024,
title = {Real-space investigation of polarons in hematite Fe2O3},
author = {Jesus Redondo and Michele Reticcioli and Vit Gabriel and Dominik Wrana and Florian Ellinger and Michele Riva and Giada Franceschi and Erik Rheinfrank and Igor Sokolovic and Zdenek Jakub and Florian Kraushofer and Aji Alexander and Laerte L. Patera and Jascha Repp and Michael Schmid and Ulrike Diebold and Gareth S. Parkinson and Cesare Franchini and Pavel Kocan and Martin Setvin},
url = {https://arxiv.org/abs/2303.17945},
year = {2023},
date = {2023-03-31},
urldate = {2023-03-31},
journal = {arXiv},
abstract = {In polarizable materials, electronic charge carriers interact with the surrounding ions, leading to quasiparticle behaviour. The resulting polarons play a central role in many materials properties including electrical transport, optical properties, surface reactivity and magnetoresistance, and polaron properties are typically investigated indirectly through such macroscopic characteristics. Here, noncontact atomic force microscopy (nc-AFM) is used to directly image polarons in Fe_{2}O_{3} at the single quasiparticle limit. A combination of Kelvin probe force microscopy (KPFM) and kinetic Monte Carlo (KMC) simulations shows that Ti doping dramatically enhances the mobility of electron polarons, and density functional theory (DFT) calculations indicate that a metallic transition state is responsible for the enhancement. In contrast, hole polarons are significantly less mobile and their hopping is hampered further by the introduction of trapping centres.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
Kraushofer, Florian; Meier, Matthias; Jakub, Zdeněk; Hütner, Johanna; Balajka, Jan; Hulva, Jan; Schmid, Michael; Franchini, Cesare; Diebold, Ulrike; Parkinson, Gareth S.
Oxygen-Terminated (1 × 1) Reconstruction of Reduced Magnetite Fe3O4(111)
Journal ArticleOpen AccessIn: vol. 14, no. 13, pp. 3258–3265, 2023.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Kraushofer2023,
title = {Oxygen-Terminated (1 × 1) Reconstruction of Reduced Magnetite Fe_{3}O_{4}(111)},
author = {Florian Kraushofer and Matthias Meier and Zdeněk Jakub and Johanna Hütner and Jan Balajka and Jan Hulva and Michael Schmid and Cesare Franchini and Ulrike Diebold and Gareth S. Parkinson},
doi = {10.1021/acs.jpclett.3c00281},
year = {2023},
date = {2023-03-28},
urldate = {2023-03-28},
volume = {14},
number = {13},
pages = {3258--3265},
publisher = {American Chemical Society (ACS)},
abstract = {The (111) facet of magnetite (Fe_{3}O_{4}) has been studied extensively by experimental and theoretical methods, but controversy remains regarding the structure of its low-energy surface terminations. Using density functional theory (DFT) computations, we demonstrate three reconstructions that are more favorable than the accepted Feoct2 termination under reducing conditions. All three structures change the coordination of iron in the kagome Feoct1 layer to be tetrahedral. With atomically resolved microscopy techniques, we show that the termination that coexists with the Fetet1 termination consists of tetrahedral iron capped by 3-fold coordinated oxygen atoms. This structure explains the inert nature of the reduced patches.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
Verdi, Carla; Ranalli, Luigi; Franchini, Cesare; Kresse, Georg
Journal ArticleIn: Physical Review Materials, vol. 7, no. 3, pp. l030801, 2023.
Abstract | Links | BibTeX | Tags: P03, P07
@article{Verdi2023,
title = {Quantum paraelectricity and structural phase transitions in strontium titanate beyond density functional theory},
author = {Carla Verdi and Luigi Ranalli and Cesare Franchini and Georg Kresse},
doi = {10.1103/physrevmaterials.7.l030801},
year = {2023},
date = {2023-03-16},
journal = {Physical Review Materials},
volume = {7},
number = {3},
pages = {l030801},
publisher = {American Physical Society (APS)},
abstract = {We demonstrate an approach for calculating temperature-dependent quantum and anharmonic effects with beyond density-functional theory accuracy. By combining machine-learned potentials and the stochastic self-consistent harmonic approximation, we investigate the cubic to tetragonal transition in strontium titanate and show that the paraelectric phase is stabilized by anharmonic quantum fluctuations. We find that a quantitative understanding of the quantum paraelectric behavior requires a higher-level treatment of electronic correlation effects via the random phase approximation. This approach enables detailed studies of emergent properties in strongly anharmonic materials beyond density-functional theory.},
keywords = {P03, P07},
pubstate = {published},
tppubtype = {article}
}