Surface structure and reactivity of
multi-component oxides at the atomic scale
Subproject P02
Multi-component metal oxides exhibit a plethora of stoichiometry-dependent structural phases at the surface, even if the composition of the bulk is kept the same. The long-term objective of P02 is to unravel the relationship between surface electronic and geometric structure and reactivity, to ultimately tune these materials for energy-related reactions such as the ORR. The project applies the surface science approach. We will grow well-defined, epitaxial perovskite thin films of LSFO and LSMO in a UHV-based PLD/surface science apparatus under tight control of the surface stoichiometry in the first project period. We will determine the coordinates of surface atoms quantitatively using LEED-IV in close collaboration with theoretical groups.
Theoretical models will also help with interpreting atomically-resolved ncAFM/STM images. These images give direct insights into the behavior of polarons in these complex materials and show how adsorbates such as O2, H2O, CO, and CO2 interact with electronic and structural defects. XPS, TPD, and FTIR of these well-defined systems will deliver desorption energies, vibrational frequencies, and spectral fingerprints. These experimental data on well-defined systems will build a bridge when tested under ‘realistic’ environments at high pressure/temperature and in aqueous solutions. They will also serve to validate ML-based theory approaches.
Expertise
Our expertise is experimental surface science. We operate a total of seven ultrahigh-vacuum (UHV) chambers, which contain virtually all main experimental surface science techniques, as well as an (electro-)chemistry lab.
All chambers are equipped with facilities for sample preparation (sputtering/annealing/gas dosing), as well as various growth techniques (e-beam evaporators, Knudsen cells, UHV-compatible sputter deposition, pulsed laser deposition (PLD)).
Analysis techniques used in our research include:
- Scanning Tunneling Microscopy (STM) (in UHV 4K – 300 K, electrochemical STM)
- Atomic Force Microscopy (AFM): UHV-based (q+ sensor) and in the ambient (cantilever-based)
- Low-Energy Electron Diffraction (LEED)
- Reflection High Energy Diffraction (RHEED)
- X-ray Photoelectron Spectroscopy (XPS)
- Ultraviolet Photoelectron Spectroscopy (UPS)
- Auger Electron Spectroscopy (AES)
- Low-energy He+ ion scattering (LEIS)
- Thermal Programmed Desorption Spectroscopy (TPD)
Team
Former Members
Publications
2024
Wanzenböck, Ralf; Heid, Esther; Riva, Michele; Franceschi, Giada; Imre, Alexander M.; Carrete, Jesús; Diebold, Ulrike; Madsen, Georg K. H.
Machine-Learning-Backed Evolutionary Exploration of Ti-rich SrTiO3(110) Surface Reconstructions
Journal ArticleIn: ChemRxiv, 2024.
Abstract | Links | BibTeX | Tags: P02, P09
@article{Wanzenboeck2024b,
title = {Machine-Learning-Backed Evolutionary Exploration of Ti-rich SrTiO_{3}(110) Surface Reconstructions},
author = {Ralf Wanzenböck and Esther Heid and Michele Riva and Giada Franceschi and Alexander M. Imre and Jesús Carrete and Ulrike Diebold and Georg K. H. Madsen},
url = {https://chemrxiv.org/engage/chemrxiv/article-details/667ae1065101a2ffa87a5a13},
year = {2024},
date = {2024-06-26},
urldate = {2024-06-26},
journal = {ChemRxiv},
abstract = {The investigation of inhomogeneous surfaces, where various local structures co-exist, is crucial for understanding interfaces of technological interest, yet it presents significant challenges. Here, we study the atomic configurations of the (2×m) Ti-rich surfaces at (110)-oriented SrTiO_{3} by bringing together scanning tunneling microscopy and transferable neural-network force fields combined with evolutionary exploration. We leverage an active learning methodology to iteratively extend the training data as needed for different configurations. Training on only small well-known reconstructions we are able to extrapolate to the complicated and diverse overlayers encountered in different regions of the heterogeneous SrTiO_{3}(110)-(2×m) surface. Our machine-learning-backed approach generates several new candidate structures, in good agreement with experiment and verified using density functional theory.},
keywords = {P02, P09},
pubstate = {published},
tppubtype = {article}
}
Rath, David; Mikerásek, Vojtěch; Wang, Chunlei; Eder, Moritz; Schmid, Michael; Diebold, Ulrike; Parkinson, Gareth S.; Pavelec, Jiří
Journal ArticleOpen AccessAccepted ArticleIn: Review of Scientific Instruments, vol. 95, iss. 6, pp. 065106, 2024.
Abstract | Links | BibTeX | Tags: P02, P04
@article{Rath2024,
title = {Infrared Reflection Absorption Spectroscopy Setup with Incidence Angle Selection for Surfaces of Non-Metals},
author = {David Rath and Vojtěch Mikerásek and Chunlei Wang and Moritz Eder and Michael Schmid and Ulrike Diebold and Gareth S. Parkinson and Jiří Pavelec},
url = {https://arxiv.org/abs/2403.19263},
doi = {https://doi.org/10.1063/5.0210860},
year = {2024},
date = {2024-06-07},
urldate = {2024-03-28},
journal = {Review of Scientific Instruments},
volume = {95},
issue = {6},
pages = {065106},
publisher = {arXiv},
abstract = {Infrared Reflection Absorption Spectroscopy (IRAS) on dielectric single crystals is challenging because the optimal incidence angles for light-adsorbate interaction coincide with regions of low IR reflectivity. Here, we introduce an optimized IRAS setup that maximizes the signal-to-noise ratio for non-metals. This is achieved by maximizing light throughput, and by selecting optimal incidence angles that directly impact the peak heights in the spectra. The setup uses a commercial FTIR spectrometer and is usable in ultra-high vacuum (UHV). Specifically, the design features sample illumination and collection mirrors with a high numerical aperture inside the UHV system, and an adjustable aperture to select the incidence angle range on the sample. This is important for p-polarized measurements on dielectrics, because the peaks in the spectra reverse direction at the Brewster angle (band inversion). The system components are connected precisely via a single flange, ensuring long-term stability. We studied the signal-to-noise (SNR) variation in p-polarized IRAS spectra for one monolayer of CO on TiO_{2}(110) as a function of incidence angle range, where a maximum signal-to-noise ratio of 70 was achieved at 4 cm^{-1} resolution in five minutes measurement time. The capabilities for s-polarization are demonstrated by measuring one monolayer D_{2}O adsorbed on a TiO_{2}(110) surface, where a SNR of 65 was achieved at a delta_R/R0 peak height of 1.4x10-4 in twenty minutes.},
keywords = {P02, P04},
pubstate = {published},
tppubtype = {article}
}
Sokolović, Igor; Guedes, Eduardo B.; van Waas, Thomas P.; Poncé, Samuel; Polley, Craig; Schmid, Michael; Radović, Milan; Setvín, Martin; Dil, J. Hugo
Duality and degeneracy lifting in two-dimensional electron liquids on SrTiO3(001)
Journal ArticleOpen AccessSubmittedarXivIn: 2024.
Abstract | Links | BibTeX | Tags: P02
@article{sokolovic2024duality,
title = {Duality and degeneracy lifting in two-dimensional electron liquids on SrTiO_{3}(001)},
author = {Igor Sokolović and Eduardo B. Guedes and Thomas P. van Waas and Samuel Poncé and Craig Polley and Michael Schmid and Milan Radović and Martin Setvín and J. Hugo Dil},
url = {https://arxiv.org/abs/2405.18946},
year = {2024},
date = {2024-05-29},
abstract = {Two-dimensional electron liquids (2DELs) have increasing technological relevance for ultrafast electronics and spintronics, yet significant gaps in their fundamental understanding are exemplified on the prototypical SrTiO_{3}. We correlate the exact SrTiO_{3}(001) surface structure with distinct 2DELs through combined microscopic angle-resolved photoemission spectroscopy and non-contact atomic force microscopy on truly bulk-terminated surfaces that alleviate structural uncertainties inherent to this long-studied system. The SrO termination is shown to develop a 2DEL following the creation of oxygen vacancies, unlike the intrinsically metallic TiO_{2} termination. Differences in degeneracy of the 2DELs, that share the same band filling and identical band bending, are assigned to polar distortions of the Ti atoms in combination with spin order, supported with the extraction of fundamental electron-phonon coupling strength. These results not only resolve the ambiguities regarding 2DELs on SrTiO_{3} thus far, but also pave the way to manipulating band filling and spin order in oxide 2DELs in general.},
keywords = {P02},
pubstate = {published},
tppubtype = {article}
}
Hütner, Johanna; Conti, Andrea; Kugler, David; Mittendorfer, Florian; Kresse, Georg; Schmid, Michael; Diebold, Ulrike; Balajka, Jan
Stoichiometric reconstruction of the Al2O3(0001) surface
Journal ArticleOpen AccessSubmittedarXivIn: 2024.
Abstract | Links | BibTeX | Tags: P02, P03
@article{hütner2024stoichiometric,
title = {Stoichiometric reconstruction of the Al_{2}O_{3}(0001) surface},
author = {Johanna Hütner and Andrea Conti and David Kugler and Florian Mittendorfer and Georg Kresse and Michael Schmid and Ulrike Diebold and Jan Balajka},
url = {https://arxiv.org/abs/2405.19263},
year = {2024},
date = {2024-05-29},
urldate = {2024-05-29},
abstract = {Macroscopic properties of materials stem from fundamental atomic-scale details, yet for insulators, resolving surface structures remains a challenge. The basal (0001) plane of α-Al_{2}O_{3} was imaged with noncontact atomic force microscopy with an atomically-defined tip apex. The surface forms a complex (3–√1×3–√1)R±9° reconstruction. The lateral positions of the individual O and Al surface atoms come directly from experiment; how these connect to the underlying crystal bulk was determined based on computational modeling. Before the restructuring, the surface Al atoms assume an unfavorable, threefold planar coordination; the reconstruction allows a rehybridization with subsurface O that leads to a substantial energy gain. The reconstructed surface remains stoichiometric, Al_{2}O_{3}.},
keywords = {P02, P03},
pubstate = {published},
tppubtype = {article}
}
Birschitzky, Viktor; Sokolovic, Igor; Prezzi, Michael; Palotas, Krisztian; Setvin, Martin; Diebold, Ulrike; Reticcioli, Michele; Franchini, Cesare
Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface
Journal ArticleOpen AccessIn: npj Computational Materials, vol. 10, no. 89, 2024.
Abstract | Links | BibTeX | Tags: P02, P07
@article{Birschitzky_2024a,
title = {Machine learning-based prediction of polaron-vacancy patterns on the TiO_{2}(110) surface},
author = {Viktor Birschitzky and Igor Sokolovic and Michael Prezzi and Krisztian Palotas and Martin Setvin and Ulrike Diebold and Michele Reticcioli and Cesare Franchini},
url = {https://www.nature.com/articles/s41524-024-01289-4},
doi = {https://doi.org/10.1038/s41524-024-01289-4},
year = {2024},
date = {2024-05-06},
urldate = {2024-05-06},
journal = {npj Computational Materials},
volume = {10},
number = {89},
abstract = {The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (V_{O}) and induced small polarons on rutile TiO_{2}(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous VO distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing V_{O}-configurations are identified, which could have consequences for surface reactivity.},
keywords = {P02, P07},
pubstate = {published},
tppubtype = {article}
}
Wang, Chunlei; Sombut, Panukorn; Puntscher, Lena; Jakub, Zdenek; Meier, Matthias; Pavelec, Jiri; Bliem, Roland; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare; Parkinson, Gareth S.
CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst
Journal ArticleOpen AccessIn PressIn: Angewandte Chemie - International Edition, no. e202317347, 2024, ISSN: 1521-3773.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Wang2024,
title = {CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst},
author = {Chunlei Wang and Panukorn Sombut and Lena Puntscher and Zdenek Jakub and Matthias Meier and Jiri Pavelec and Roland Bliem and Michael Schmid and Ulrike Diebold and Cesare Franchini and Gareth S. Parkinson},
doi = {10.1002/anie.202317347},
issn = {1521-3773},
year = {2024},
date = {2024-01-31},
journal = {Angewandte Chemie - International Edition},
number = {e202317347},
publisher = {Wiley},
abstract = {The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh_{1} adatoms and minority Rh_{2} dimers on Fe_{3}O_{4}(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh_{1} sites results exclusively in stable Rh_{1}CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh_{1}(CO)_{2} gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh_{2} dimers via an unstable Rh_{2}(CO)_{3} intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
2023
Gamba, Oscar; Eder, Moritz; Poglitsch, Matthias; Pavelec, Jiri; Sombut, Panukorn; Meier, Matthias; Diebold, Ulrike; Schmid, Michael; Parkinson, Gareth S.
Formation and stability of Fe-rich terminations of the Fe3O4(001) surface
Journal ArticleOpen AccessIn: Materials Research Express, vol. 10, iss. 44, no. 116517, 2023.
Abstract | Links | BibTeX | Tags: P02, P04
@article{Gamba2023,
title = {Formation and stability of Fe-rich terminations of the Fe_{3}O_{4}(001) surface},
author = {Oscar Gamba and Moritz Eder and Matthias Poglitsch and Jiri Pavelec and Panukorn Sombut and Matthias Meier and Ulrike Diebold and Michael Schmid and Gareth S. Parkinson},
doi = {10.1088/2053-1591/ad0ac5},
year = {2023},
date = {2023-11-22},
urldate = {2023-11-22},
journal = {Materials Research Express},
volume = {10},
number = {116517},
issue = {44},
publisher = {IOP Publishing},
abstract = {Understanding how the structure of iron oxide surfaces varies with their environment is essential for rationalizing their role in (geo-)chemistry and optimizing their application in modern technologies. In this paper, we create Fe-rich terminations of Fe_{3}O_{4}(001) by depositing iron directly onto the 'subsurface cation vacancy'-reconstructed surface, which is the most stable surface under ultrahigh vacuum conditions. Scanning tunneling microscopy and x-ray photoelectron spectroscopy data reveal that the excess iron is initially accommodated as two-fold coordinated adatoms and later incorporates into the subsurface cation vacancies. As the coverage increases, small patches of the octahedral pair termination (also known as the 'Fe dimer' termination) nucleate, eventually covering the entire surface after the deposition of 2 iron atoms per (√2×√2)R45° unit cell. This conclusion effectively rules out some existing models for the termination and provides support for the model proposed by Rustad \textit{et al.} (Surface Science 432, L583-L588, 1999), highlighting the need for further theoretical work to complete the Fe_{3}O_{4}(001) surface phase diagram. The octahedral pair termination is found to be unstable above 523 K and upon exposure to molecular O2 because the excess iron atoms agglomerate to form small FeO_{x} clusters.},
keywords = {P02, P04},
pubstate = {published},
tppubtype = {article}
}
Puntscher, Lena; Sombut, Panukorn; Wang, Chunlei; Ulreich, Manuel; Pavelec, Jiri; Rafsanjani-Abbasi, Ali; Meier, Matthias; Lagin, Adam; Setvin, Martin; Diebold, Ulrike; Franchini, Cesare; Schmid, Michael; Parkinson, Gareth S.
A Multitechnique Study of C2H4 Adsorption on Fe3O4(001)
Journal ArticleOpen AccessIn: Journal of Physical Chemistry C, vol. 127, iss. 37, pp. 18378–18388, 2023.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Puntscher2023,
title = {A Multitechnique Study of C_{2}H_{4} Adsorption on Fe_{3}O_{4}(001)},
author = {Lena Puntscher and Panukorn Sombut and Chunlei Wang and Manuel Ulreich and Jiri Pavelec and Ali Rafsanjani-Abbasi and Matthias Meier and Adam Lagin and Martin Setvin and Ulrike Diebold and Cesare Franchini and Michael Schmid and Gareth S. Parkinson},
doi = {10.1021/acs.jpcc.3c03684},
year = {2023},
date = {2023-09-11},
urldate = {2023-09-11},
journal = {Journal of Physical Chemistry C},
volume = {127},
issue = {37},
pages = {18378--18388},
publisher = {American Chemical Society (ACS)},
abstract = {The adsorption/desorption of ethene (C_{2}H_{4}), also commonly known as ethylene, on Fe_{3}O_{4}(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C_{2}H_{4} adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C_{2}H_{4} binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1–0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C_{2}H_{4} adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}
Redondo, Jesús; Michalička, Jan; Kraushofer, Florian; Franceschi, Giada; Šmid, Břetislav; Kumar, Nishant; Man, Ondřej; Blatnik, Matthias; Wrana, Dominik; Mallada, Benjamin; Švec, Martin; Parkinson, Gareth S.; Setvin, Martin; Riva, Michele; Diebold, Ulrike; Čechal, Jan
Journal ArticleOpen AccessIn: Advanced Materials Interfaces, no. 2300602, 2023.
Abstract | Links | BibTeX | Tags: P02, P04
@article{Redondo2023,
title = {Hematite α-Fe_{2}O_{3}(0001) in Top and Side View: Resolving Long-Standing Controversies about Its Surface Structure},
author = {Jesús Redondo and Jan Michalička and Florian Kraushofer and Giada Franceschi and Břetislav Šmid and Nishant Kumar and Ondřej Man and Matthias Blatnik and Dominik Wrana and Benjamin Mallada and Martin Švec and Gareth S. Parkinson and Martin Setvin and Michele Riva and Ulrike Diebold and Jan Čechal},
doi = {10.1002/admi.202300602},
year = {2023},
date = {2023-08-18},
urldate = {2023-08-18},
journal = {Advanced Materials Interfaces},
number = {2300602},
publisher = {Wiley},
abstract = {Hematite is a common iron oxide found in nature, and the α-Fe_{2}O_{3}(0001) plane is prevalent on the nanomaterial utilized in photo- and electrocatalytic applications. The atomic-scale structure of the surface remains controversial despite decades of study, partly because it depends on sample history as well as the preparation conditions. Here, a comprehensive study is performed using an arsenal of surface techniques (non-contact atomic force microscopy, scanning tunneling microscopy, low-energy electron diffraction, and X-ray photoemission spectroscopy) complemented by analyses of the near surface region by high-resolution transmission electron microscopy and electron energy loss spectroscopy. The results show that the so-called “bi-phase” termination forms even under highly oxidizing conditions; a (1 × 1) surface is only observed in the presence of impurities. Furthermore, it is shown that the biphase is actually a continuous layer distorted due to a mismatch with the subsurface layers, and thus not the proposed mixture of FeO(111) and α-Fe_{2}O_{3}(0001) phases. Overall, the results show how combining surface and cross-sectional imaging provides a full view that can be essential for understanding the role of the near-surface region on oxide surface properties.},
keywords = {P02, P04},
pubstate = {published},
tppubtype = {article}
}
Redondo, Jesus; Reticcioli, Michele; Gabriel, Vit; Wrana, Dominik; Ellinger, Florian; Riva, Michele; Franceschi, Giada; Rheinfrank, Erik; Sokolovic, Igor; Jakub, Zdenek; Kraushofer, Florian; Alexander, Aji; Patera, Laerte L.; Repp, Jascha; Schmid, Michael; Diebold, Ulrike; Parkinson, Gareth S.; Franchini, Cesare; Kocan, Pavel; Setvin, Martin
Real-space investigation of polarons in hematite Fe2O3
Journal ArticleSubmittedarXivIn: arXiv, 2023.
Abstract | Links | BibTeX | Tags: P02, P04, P07
@article{Redondo2024,
title = {Real-space investigation of polarons in hematite Fe2O3},
author = {Jesus Redondo and Michele Reticcioli and Vit Gabriel and Dominik Wrana and Florian Ellinger and Michele Riva and Giada Franceschi and Erik Rheinfrank and Igor Sokolovic and Zdenek Jakub and Florian Kraushofer and Aji Alexander and Laerte L. Patera and Jascha Repp and Michael Schmid and Ulrike Diebold and Gareth S. Parkinson and Cesare Franchini and Pavel Kocan and Martin Setvin},
url = {https://arxiv.org/abs/2303.17945},
year = {2023},
date = {2023-03-31},
urldate = {2023-03-31},
journal = {arXiv},
abstract = {In polarizable materials, electronic charge carriers interact with the surrounding ions, leading to quasiparticle behaviour. The resulting polarons play a central role in many materials properties including electrical transport, optical properties, surface reactivity and magnetoresistance, and polaron properties are typically investigated indirectly through such macroscopic characteristics. Here, noncontact atomic force microscopy (nc-AFM) is used to directly image polarons in Fe_{2}O_{3} at the single quasiparticle limit. A combination of Kelvin probe force microscopy (KPFM) and kinetic Monte Carlo (KMC) simulations shows that Ti doping dramatically enhances the mobility of electron polarons, and density functional theory (DFT) calculations indicate that a metallic transition state is responsible for the enhancement. In contrast, hole polarons are significantly less mobile and their hopping is hampered further by the introduction of trapping centres.},
keywords = {P02, P04, P07},
pubstate = {published},
tppubtype = {article}
}