Polaron pattern recognition
in correlated oxide surfaces

Subproject P07

The formation of polarons by charge trapping is pervasive in transition metal oxides. Polarons have been widely studied in binary compounds but comparatively much less so in perovskites.

In P07, we aim to combine advanced first-principles approaches with computer-vision and machine-learning techniques to accelerate and automatize the study of polarons and novel polaron effects in perovskites.
The project has three main pillars: (i) artificial intelligence-aided analysis of experimental ncAFM/STM results (from P02 Diebold, P04 Parkinson) to extract lattice symmetry, surface structure, and chemical composition; (ii) calculation of polaronic configurational energies at different concentrations and temperature using NN; and (iii) identification of unusual types of polarons and polaron-defect complexes in doped perovskites such as spin-, ferroelectric-, Jahn-Teller-, small polarons, and bipolarons.

In the long-term, we plan to establish a fully automatic diagnosis of ncAFM/STM (symmetry, defects, domains) and LEED (diffraction, surface reconstruction) and the construction of a combined experiment & theory database. The research will benefit from two external collaborators and synergy with several experimental (P02, P04) and computational (P03 Kresse, P09 Madsen) TACO partners.

Cesare Franchini
PI

Expertise

Theoretical and computational modeling of quantum materials, in particular transition metal oxides in bulk phases and surfaces, to predict and interpret novel physical effects and states of matter arising from fundamental quantum interactions: electron-electron correlation, electron-phonon coupling, spin-spin exchange, spin-orbit coupling, to name the most relevant ones. The theoretical research is conducted in strong synergy and cooperation with experimental groups.

Methods:

  • Density functional theory, hybrid functionals, GW, BSE
  • First principles molecular dynamics
  • Effective Hamiltonian
  • Diagrammatic quantum Monte Carlo
  • Dynamical mean-field theory
  • Machine learning and computer vision

Applications:

  • Polarons: formation, dynamics, polaron-mediated effects, many-body properties
  • Computational surface science: energetics, reconstructions, surface polarons, polarity effects, adsorption and chemical reactions
  • Quantum magnetism: all-rank multipolar spin-spin interactions beyond Heisenberg exchange
  • Electronic and magnetic phase transitions

Our goals in TACO:

  1. Accelerated study of polaron properties by integrating molecular dynamics and machine learning methods (kernel-ridge regression, standard and convolutional neural-networks
  2. Implementation of automated identification of local structures in atomically resolved images using computer vision methods
  3. Complementing the experimental measurements with extensive first principles modeling of perovskite surfaces.

Team

Cesare Franchini
PI

Matthias Meier
co-PI

Michele Reticcioli
co-PI

Viktor Birschitzky
PhD Student

Marco Corrias
PhD Student

Florian Ellinger
PhD Student

Publications

Show all

43 entries « 4 of 5 »

2019

Parallel Multistream Training of High-Dimensional Neural Network Potentials

Singraber, Andreas; Morawietz, Tobias; Behler, Jörg; Dellago, Christoph

Parallel Multistream Training of High-Dimensional Neural Network Potentials

Journal Article

In: Journal of Chemical Theory and Computation, vol. 15, no. 5, pp. 3075–3092, 2019.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

How water flips at charged titanium dioxide: an SFG-study on the water–TiO2 interface

Schlegel, Simon J; Hosseinpour, Saman; Gebhard, Maximilian; Devi, Anjana; Bonn, Mischa; Backus, Ellen H. G.

How water flips at charged titanium dioxide: an SFG-study on the water–TiO2 interface

Journal ArticleOpen Access

In: Physical Chemistry Chemical Physics, vol. 21, no. 17, pp. 8956–8964, 2019.

Abstract | Links | BibTeX | Tags: P11, pre-TACO

Preface: Surface Science of functional oxides

Diebold, Ulrike; Rupprechter, Günther

Preface: Surface Science of functional oxides

Journal Article

In: Surface Science, vol. 681, pp. A1, 2019.

Links | BibTeX | Tags: P02, P08, pre-TACO

Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials

Singraber, Andreas; Behler, Jörg; Dellago, Christoph

Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials

Journal Article

In: Journal of Chemical Theory and Computation, vol. 15, no. 3, pp. 1827–1840, 2019.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

Interplay between Adsorbates and Polarons: CO on Rutile TiO2(110)

Reticcioli, Michele; Sokolović, Igor; Schmid, Michael; Diebold, Ulrike; Setvin, Martin; Franchini, Cesare

Interplay between Adsorbates and Polarons: CO on Rutile TiO2(110)

Journal Article

In: Physical Review Letters, vol. 122, no. 1, pp. 016805, 2019.

Abstract | Links | BibTeX | Tags: P02, P07, pre-TACO

Ab initio thermodynamics of liquid and solid water

Cheng, Bingqing; Engel, Edgar A; Behler, Jörg; Dellago, Christoph; Ceriotti, Michele

Ab initio thermodynamics of liquid and solid water

Journal ArticleOpen Access

In: Proceedings of the National Academy of Sciences, vol. 116, no. 4, pp. 1110–1115, 2019.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

2018

Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD

Lukashuk, Liliana; Yigit, Nevzat; Rameshan, Raffael; Kolar, Elisabeth; Teschner, Detre; Hävecker, Michael; Knop-Gericke, Axel; Schlögl, Robert; Föttinger, Karin; Rupprechter, Günther

Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD

Journal ArticleOpen Access

In: ACS Catalysis, vol. 8, no. 9, pp. 8630–8641, 2018.

Abstract | Links | BibTeX | Tags: P08, P10, pre-TACO

2017

Polaron-Driven Surface Reconstructions

Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Flauger, Peter; Kresse, Georg; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare

Polaron-Driven Surface Reconstructions

Journal ArticleOpen Access

In: Physical Review X, vol. 7, no. 3, pp. 031053, 2017.

Abstract | Links | BibTeX | Tags: P02, P03, P07, pre-TACO

How Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids

Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Curtarolo, Stefano; Mingo, Natalio

How Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids

Journal Article

In: Chemistry of Materials, vol. 29, no. 15, pp. 6220–6227, 2017.

Abstract | Links | BibTeX | Tags: P09, pre-TACO

2016

Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts

Lukashuk, Liliana; Föttinger, Karin; Kolar, Elisabeth; Rameshan, Christoph; Teschner, Detre; Hävecker, Michael; Knop-Gericke, Axel; Yigit, Nevzat; Li, Hao; McDermott, Eamon; Stöger-Pollach, Michael; Rupprechter, Günther

Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts

Journal ArticleOpen Access

In: Journal of Catalysis, vol. 344, pp. 1–15, 2016.

Abstract | Links | BibTeX | Tags: P08, P10, pre-TACO

43 entries « 4 of 5 »