Surface chemistry, structure, and reactivity
of multi-component spinel nanoparticles

Subproject P10

Multi-component spinel oxides are complex materials. Understanding their properties and reactivity is challenging, even more so when considering defect-rich nanoparticles under actual reaction conditions.

In P10, we will apply a comprehensive, multi-technique operando approach to investigate Fe-based spinel oxide nanoparticles used as WGS and oxidation catalysts in the gas and liquid phase. We will determine their surface composition, particularly under reaction conditions, the state, coordination environment, and role of the constituent cations, and the influence of defects. We will link these properties to the reactivity and interaction with O2, H2O, H2, CO, and CO2. Furthermore, we will evaluate how spinels and their surfaces change when exposed to the liquid phase. Our experimental approach comprises synthesis, characterization (TEM, XRD, XPS, TPD, titration of sites and defects, IR of probe molecules), steady-state and transient kinetics, and operando characterization (IR, NAP-XPS, XAS).

In close interaction with surface science (P04 Parkinson), we will compare the nanoparticulate materials to single-crystal and thin-film model systems. For understanding complex materials, a close collaboration with the surface science and theory groups is essential. In return, our results on technologically relevant nanoparticles under operation conditions will help to validate and adapt models and address the influence of high defectivity, low coordinated sites, disorder, and low crystallinity. We aim to bridge fundamental theory studies, surface science experiments, and model studies (P11 Backus) towards real-world application.

Karin Föttinger
PI

Expertise

Our group has long term experience in the application of operando spectroscopy (FTIR, XPS and XAS) for studying heterogeneous catalysts. Our research interests are centered around establishing structure-performance relations of oxides and supported metal nanoparticles and identifying reaction mechanisms. Understanding the elementary reaction steps occurring at the catalyst surface and identification of the involved intermediates and surface sites under relevant conditions is a main focus and crucial for a rational design and improvement of catalytic materials.

Methods and expertise available in our lab include:

  • in situ/operando FTIR (transmission, DRIFTS and ATR-IR) during catalytic reactions (steady-state and concentration modulation setups)
  • several laboratory-scale flow reactors equipped with gas chromatographs and mass spectrometers for performing catalytic reactions in the gas and liquid phase
  • in-situ Near Ambient Pressure XPS setup
  • volumetric physisorption and chemisorption, dynamic (pulsed) chemisorption
  • temperature-programmed methods (TPD, TPR, TPO)
  • DR-UV/VIS spectroscopy
  • thermal analysis (DSC and TGA)
  • fully equipped synthesis lab
  • we regularly perform in situ XAS and high resolution XRD/total scattering at synchrotron facilities using dedicated operando cells
  • we frequently utilize HR-TEM with EDX and EELS, SEM, XRF, XRD (including in situ XRD) and ICP-MS available via service centers and/or collaborations

Team

Karin Föttinger
PI

Christoph Rameshan
co-PI

Alberto Tampieri
PostDoc

Michael Pittenauer
PhD Student

Alexander Eder
Master Student

Marianne Ivkic
Master Student

Tobias Wagner
Student Assistant

Björn Wellscheid
Student Assistant

Associates

Florian Schrenk
PhD Student

Publications

Show all

43 entries « 3 of 5 »

2020

Energy-Guided Shape Control Towards Highly Active CeO2

Yang, Jingxia; Ding, Huihui; Wang, Jinjie; Yigit, Nevzat; Xu, Jingli; Rupprechter, Günther; Zhang, Min; Li, Zhiquan

Energy-Guided Shape Control Towards Highly Active CeO2

Journal Article

In: Topics in Catalysis, vol. 63, no. 19-20, pp. 1743–1753, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Jinnouchi, Ryosuke; Miwa, Kazutoshi; Karsai, Ferenc; Kresse, Georg; Asahi, Ryoji

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Journal Article

In: The Journal of Physical Chemistry Letters, vol. 11, no. 17, pp. 6946–6955, 2020.

Abstract | Links | BibTeX | Tags: P03, pre-TACO

Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Grumelli, Doris; Wiegmann, Tim; Barja, Sara; Reikowski, Finn; Maroun, Fouad; Allongue, Philippe; Balajka, Jan; Parkinson, Gareth S.; Diebold, Ulrike; Kern, Klaus; Magnussen, Olaf M

Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Journal Article

In: Angewandte Chemie - International Edition, vol. 59, no. 49, pp. 21904–21908, 2020.

Abstract | Links | BibTeX | Tags: P02, P04, pre-TACO

Catalysis by Imaging: From Meso- to Nano-scale

Suchorski, Yuri; Rupprechter, Günther

Catalysis by Imaging: From Meso- to Nano-scale

Journal ArticleOpen Access

In: Topics in Catalysis, vol. 63, no. 15-18, pp. 1532–1544, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Probing the Mineral–Water Interface with Nonlinear Optical Spectroscopy

Backus, Ellen H. G.; Schaefer, Jan; Bonn, Mischa

Probing the Mineral–Water Interface with Nonlinear Optical Spectroscopy

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 60, no. 19, pp. 10482–10501, 2020.

Abstract | Links | BibTeX | Tags: P11, pre-TACO

The Dynamic Structure of Au38(SR)24 Nanoclusters Supported on CeO2 upon Pretreatment and CO Oxidation

Pollitt, Stephan; Truttmann, Vera; Haunold, Thomas; Garcia, Clara; Olszewski, Wojciech; Llorca, Jordi; é, Noelia Barrab; Rupprechter, Günther

The Dynamic Structure of Au38(SR)24 Nanoclusters Supported on CeO2 upon Pretreatment and CO Oxidation

Journal ArticleOpen Access

In: ACS Catalysis, vol. 10, no. 11, pp. 6144–6148, 2020.

Abstract | Links | BibTeX | Tags: P08, pre-TACO

Surface Charges at the CaF2/Water Interface Allow Very Fast Intermolecular Vibrational-Energy Transfer

Lesnicki, Dominika; Zhang, Zhen; Bonn, Mischa; Sulpizi, Marialore; Backus, Ellen H. G.

Surface Charges at the CaF2/Water Interface Allow Very Fast Intermolecular Vibrational-Energy Transfer

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 59, no. 31, pp. 13116–13121, 2020.

Abstract | Links | BibTeX | Tags: P11, pre-TACO

Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution

Lindenthal, Lorenz; Rameshan, Raffael; Summerer, Harald; Ruh, Thomas; Popovic, Janko; Nenning, Andreas; Löffler, Stefan; Opitz, Alexander Karl; Blaha, Peter; Rameshan, Christoph

Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution

Journal ArticleOpen Access

In: Catalysts, vol. 10, no. 3, pp. 268, 2020.

Abstract | Links | BibTeX | Tags: P10, pre-TACO

2019

Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations

Michl, Jakob; Sega, Marcello; Dellago, Christoph

Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations

Journal ArticleOpen Access

In: The Journal of Chemical Physics, vol. 151, no. 10, pp. 104502, 2019.

Abstract | Links | BibTeX | Tags: P12, pre-TACO

Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst

Jakub, Zdenek; Hulva, Jan; Meier, Matthias; Bliem, Roland; Kraushofer, Florian; Setvin, Martin; Schmid, Michael; Diebold, Ulrike; Franchini, Cesare; Parkinson, Gareth S.

Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst

Journal ArticleOpen Access

In: Angewandte Chemie - International Edition, vol. 58, no. 39, pp. 13961–13968, 2019.

Abstract | Links | BibTeX | Tags: P02, P04, P07, pre-TACO

43 entries « 3 of 5 »